Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity.

نویسندگان

  • Thomas R Salas
  • Jeri Kim
  • Funda Vakar-Lopez
  • Anita L Sabichi
  • Patricia Troncoso
  • Guido Jenster
  • Akira Kikuchi
  • Shao-Yong Chen
  • Lirim Shemshedini
  • Milind Suraokar
  • Christopher J Logothetis
  • John DiGiovanni
  • Scott M Lippman
  • David G Menter
چکیده

Kinases can phosphorylate and regulate androgen receptor activity during prostate cancer progression. In particular, we showed that glycogen synthase kinase-3 beta phosphorylates the androgen receptor, thereby inhibiting androgen receptor-driven transcription. Conversely, the glycogen synthase kinase-3 beta inhibitor lithium chloride suppressed the glycogen synthase kinase-3 beta-mediated phosphorylation of the androgen receptor, thereby enabling androgen receptor-driven transcription to occur. The androgen receptor hinge and ligand-binding domains were important for both the phosphorylation and the inhibition of transcriptional activity of the receptor by glycogen synthase kinase-3 beta. Furthermore, androgen receptor phosphorylation was augmented by LY294002, an indirect inhibitor of protein kinase B/Akt that inhibits glycogen synthase kinase-3 beta. We also showed that the mutation of various phosphorylation sites on glycogen synthase kinase-3 beta affected the ability of these mutants to co-distribute with the androgen receptor in the cell nucleus, also that both glycogen synthase kinase-3beta and androgen receptor proteins can be found in cell nuclei of prostate cancer tissue samples. Because glycogen synthase kinase-3 beta activity is suppressed after the enzyme is phosphorylated by protein kinase B/Akt and Akt activity frequently increases during the progression of prostate cancer, nullification of the glycogen synthase kinase-3 beta-mediated suppression of androgen receptor activity by Akt likely contributes to prostate cancer progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β

Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...

متن کامل

Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle.

Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity ...

متن کامل

Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients.

We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosin...

متن کامل

Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action.

The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 18  شماره 

صفحات  -

تاریخ انتشار 2004